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Laboratory modelling of strain variation across rheological boundaries 
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Abstract--Laboratory models using viscous and viscoplastic silicones to simulate strain variation across 
competence contrasts are presented. This provides a test for earlier theoretical modelling of strain refraction in 
layers with Newtonian viscosity contrast, and a method of examining refraction rules for non-Newtonian 
materials. The main purpose is to test the theoretical rule that the finite shear strain ratio across a boundary is 
equivalent to the inverse viscosity ratio. Results for simple-shear experiments confirm this within the errors of 
viscometry and strain measurement. We investigate whether this rule applies to non-Newtonian materials, which 
necessarily involves a discussion on the nature of viscosity contrast for non-linear materials such as power-law 
fluids, and its bearing on competence contrasts in rocks. 

These models also provide data on strain gradients generated by viscosity boundaries, which was not included 
in the earlier theoretical analyses. In the simple-shear experiments, the normalized shear strain profiles indicate 
an approximately linear shear stress gradient from the viscosity boundaries. Using an idealized linear shear strain 
gradient in a Newtonian matrix approaching a contrasting layer, we can derive expressions to predict the viscosity 
ratio. This may be a viable method of determining approximate viscosity ratios for more general deformations. 

INTRODUCTION 

Competence and the rheology of rock 

THE variation in behaviour of rocks in deformation is 
commonly known as competence or competence con- 
trast. Ramsay & Huber (1987, p. 12) describe com- 
petence as "the ease with which a material can deform", 
and use a dual definition of relative competence in terms 
of both ductile and brittle strength. Means (1990) re- 
stricts the definition to the brittle strength of materials. 
However, we find that 'competence' is most widely used 
as a measure of (inverse) relative ductility, as considered 
in detail by Ramsay (1982). We shall continue with this 
use of competence as a measure of the resistance to 
pervasive (ductile in the loose sense) deformation. The 
most important question, then, is the meaning of com- 
petence in the material sense. The answer must depend 
on the nature and meaning of viscosity for deforming 
rocks: the rheology of flowing rocks. We cannot hope to 
review all the relevant work in this field, so refer readers 
to recent reviews by Schmid (1982), Carter & Tsenn 
(1987), Kirby & Kronenberg (1987), Paterson (1987), 
Tsenn & Carter (1987) and Handy (1990) which provide 
a wealth of data and theory on the flow of rocks in the 
laboratory and in nature. 

The creep or flow of materials may be considered, in 
theory, to fall into three broad groups (Tsenn & Carter 
1987) at progressively increasing deformation rate: (i) 
diffusional creep which is equivalent to Newtonian fluid 
flow; (ii) power-law or dislocation creep which behaves 

according to a 'power-law' or Reiner-Rivlin fluid; and 
(iii) exponential creep. Laboratory creep tests on rocks 
have not conclusively confirmed diffusional creep. How- 
ever, there has been a long tradition of theoretical 
modelling of ductile structures by Newtonian flow laws, 
which considerably predates laboratory creep experi- 
ments. 

The above cited reviews of rock rheology reveal that a 
wide variety of rocks are found to flow by power-law 
creep according to the (simplified) Weertman relation 
(for two-dimensional flow) k = Act n, where k is a steady- 
state strain rate, a is the differential stress, A is a 
material constant and n is the 'stress exponent'. Sum- 
maries of values of A and n for different rock types are 
provided by Carter & Tsenn (1987, table 4) and Kirby & 
Kronenberg (1987, table 3). n values are from 1 to >10, 
with many values in the 3--6 range. However, Schmid 
(1982) has shown that for the same rock type, n may vary 
greatly according to the deformation mechanism. Pater- 
son (1987) concluded that extrapolation from experi- 
ments to nature must be made with caution. To date, 
only a few rock types have been examined extensively, 
and flow in polymineralic rocks is not yet well under- 
stood (see Handy 1990). 

There is an additional problem with applying the 
results of laboratory creep experiments to the flow of 
rocks under natural deformation conditions, highlighted 
by Hobbs (1972, p. 247): "For deformation by steady 
shortening all simple fluids behave as Reiner-Rivlin 
fluids [Truesdell & Nol11965, pp. 472-473] . . . .  Thus the 
power laws quoted for geological and metallurgical 
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materials and obtained from steady-state creep experi- 
ments are to some extent the result of the experimental 
technique and not of the material being deformed". This 
quotation would seem to be important and relevant to 
any review of rock rheology, and the question of 
whether rocks flow according to the 'power law'. It may 
also be relevant to the considerable number of analogue 
materials which laboratory measurements show to be 
approximately 'power law' (e.g. Plasticine, McClay 
1976; silicone putties, Weijermars 1986a; paraffin wax, 
Mancktelow 1988), including the materials described 
later in this paper. 

We are interested in modelling the rheology and 
relative flow behaviour (i.e. relative competence) of the 
kinds of rocks which occur together and form geological 
structures. By far the commonest lithologies from which 
interpretations of competence contrasts are made, are 
folded sedimentary and metasedimentary rocks in the 
psammite to pelite range. There appears to be little 
documentary evidence to confirm whether these litho- 
logies generally flow as Newtonian or power-law fluids 
(or neither). However, studies of wavelength-thick- 
ness relationships and strain in single-layer folds in 
limestones (Fletcher 1974, Hudleston & Hoist 1984), 
compared to theoretical values for Newtonian and 
power-law materials, suggest power-law flow for these 
limestones, with exponent, n, significantly greater than 
unity. 

We remain uncertain about the extrapolation of ana- 
logue experimental data to natural deforming rocks, or 
how far the above analyses for limestones can be taken 
as indicative of other rock types. If rocks do generally 
flow as power-law fluids, we are faced with an endless 
range of theoretical permutations, when the possible 
variations of A and n for two adjacent layers are con- 
sidered. Until these questions are better resolved, we 
consider it justified to model competence contrast using 
Newtonian rheology, for both theory and experiments. 

Strain refraction across competence contrasts 

Treagus (1973, 1981a, 1983, 1988) has examined 
theoretical variations of stress and strain across layers of 
different viscosity, with the aim of quantifying the 
expected strain variations across lithological contrasts, 
or competence contrasts. The theoretical model 
assumes planar Newtonian layers which are in perfect 
adherence (equal interracial stretching and equal inter- 
facial shear stress). Treagus (1983, 1988) (Fig. 1) showed 
that finite strain ellipsoids would refract and change 
shape across viscosity contrasts, by an important rule: 
the ratio of  layer-parallel finite shear strain across a 
boundary is equal to the inverse viscosity ratio (also 
Cobbold 1983). This process may be termed strain 
refraction. The implications of this strain refraction 
theory to cleavage refraction in rocks were considered in 
Treagus (1983) (see also Talbot 1983), and some 
broader geological implications discussed in Treagus 
(1988) and references therein. 

In a theoretical study of the kinematics and mechanics 

Fig. 1. Schematic pattern of strain refraction across a multilayer 
comprising semi-infinite planar layers of alternating Newtonian visco- 
sity, with viscosity ratio 25. Shaded layers are the more competent. 

After Treagus (1983, 1988). 

of coherent interfaces, Cobbold (1983) showed that the 
finite shear strain ratio (his K) should equal the inverse 
material ratio for any linear materials (Hookean elastic 
and Newtonian viscous). For non-linear rheologies, 
such as Reiner-Rivlin fluids and 'power-law' fluids, 
Cobbold found that K was not a constant, except in 
certain special deformations. Thus, a theory of finite 
strain refraction in layered 'power-law' systems, which 
might be considered a more suitable rheological model 
than Newtonian, would seem to be intractable in a 
general sense. Instead, we shall investigate the problems 
through laboratory modelling. 

Laboratory modelling of  strain refraction 

This paper presents the results of a laboratory pro- 
gramme to test the theoretical rules of strain refraction 
and interface flow relationships. The present experi- 
ments were designed for the Hans Ramberg Tectonic 
Laboratory, Uppsala, using the existing calibrated mod- 
elling materials and deformation rigs. The primary pur- 
pose was to test the theoretical (Newtonian) model of 
strain refraction (Treagus 1983, 1988), using Newtonian 
laboratory materials; specifically, to test whether the 
shear strain ratio across a boundary is equivalent to the 
inverse viscosity ratio. The secondary purpose was to 
examine the nature of strain refraction for strain-rate 
dependent rheologies. 

We considered two kinds of model designs in which 
the layers are oblique to principal displacements, and 
which therefore have components of layer-parallel shear 
strain (which might refract). The simplest is layers in 
layer-parallel simple shear; there is no component of 
layer-parallel straining in such a system, and so, in 
theory, the simple-shear ratio should be the inverse 
viscosity ratio. This is very much a 'special case' defor- 
mation, but useful to reveal processes in their simplest 
form. The second and more general system is one of 
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oblique contrasting layers in pure shear, which was the 
kind of set-up used in some previous experiments (Trea- 
gus 1972). 

We make no at tempt to scale our models to nature,  for 
two reasons. First, these models were designed to test a 
working theory for strain refraction, not to model a 
particular natural structure, with our interest focusing 
more on the process, rather than exact similarity of the 
materials to particular rocks. Secondly, as we have 
at tempted to show in our review of rheology and com- 
petence,  the parameters for flow in rocks, and the actual 
flow laws, are far less from certain for ductile geological 
deformations of varied metasedimentary rocks. 

LABORATORY MODELS, PROCEDURES AND 
MATERIALS 

Viscometry 

The viscosities of the materials used were measured in 
the Hans Ramberg Tectonic Laboratory at Uppsala, 
using two kinds of viscometers: the German Haake  
capillary (extrusion) viscometer, and the concentric 
cylinder (Couette) viscometer constructed at Uppsala 
by R. Hfill. The functions, advantages/disadvantages 
and necessary corrections, particularly for non- 
Newtonian materials, have been discussed by Weijer- 
mars (1986a). 

Rheology maps 

The properties of the model materials described 
below are presented on a rheology map (Fig. 2) of log 
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Fig. 2. Viscosity diagram and rheology map of log ~ vs log ~,, for the 
materials used in this paper, taken from laboratory viscometry 
measurements (Table 1). r is shear stress and ~ engineering shear 
strain rate (=2b, the natural strain rate). Newtonian materials follow 
the diagonals, which also provide the effective viscosity scale. Other 
straight lines indicate 'power-law' flow, with stress exponent, n, given 
by the cotangent of line slope. Material a: Rhodorsil Gomme 'bounc- 
ing putty'; Material b: PDMS; Material c: mixture of 77 wt % PDMS 
and 23 wt % barium sulphate; Material d: mixture of 67 wt % Plastilina 
and33 wt % Rhodorsil Gomme; Material e: Dow Coming silicone 
putty. Materials at laboratory room temperature: see text and Table 1 

for more details. 

shear stress against log shear strain rate, This kind of 
graph is commonly used to present viscosities and flow 
properties of model materials (e.g. Dixon & Summers 
1985, 1986, Weijermars & Schmeling 1986, fig, 3, Sok- 
outis 1987), and is particularly useful for distinguishing 
Newtonian, power-law and other types of rheologies 
(see Fig. 2 caption). This kind of diagram will also be 
used later in the paper, as a method of representing 
values of stress and strain rate refraction in the models 
and in theory. 

Model materials 

Most of the materials used in the experiments 
described in this paper are silicone-based compounds 
which have been examined in detail by Weijermars 
(1986a). Two are Newtonian within the range of strain 
rates used, with not very different viscosity. These 
proved suitable for testing whether the theoretical rule 
that the finite shear strain ratio equals the inverse 
viscosity ratio for Newtonian behaviour (Cobbold 1983, 
Treagus 1983, 1988) is satisfied in laboratory experi- 
ments. We would have preferred to use two Newtonian 
silicones with a higher viscosity ratio (e.g. 5, 10 and 
more) ,  but suitable materials were not available. Stiffen- 
ing Newtonian silicones with fillers generally takes them 
away from Newtonian behaviour (Onogi & Matsumuto 
1981), and so our stiffer materials such as silicone putties 
and various mixtures were all non-Newtonian to various 
degrees. They were generally shown from viscometry 
(see below) to be close to 'power-law' flow. 

The five model materials used in the experiments are 
described below, and their properties are summarized in 
Table 1 and Fig. 2. 

Material a: Rhodorsil Gomme GSIR (RG) is a pink 
opaque bouncing putty supplied by Rhone-Poulenc of 
Paris. The viscosity of R G  was determined by the Haake 
steady-state extrusion viscometer as 2.9 × 10 4 Pa s 
(Sokoutis 1987). This closely matched measurements 
using the coaxial cylinder viscometer. 

Material b: polydimethylsiloxane polymer (PDMS) is 
a transparent and colourless silicone gel manufactured 
by Dow Corning of Great  Britain under the code name 
SGM 36. It is one of a group of PDMS liquid polymers 
investigated by Weijermars (1986b,c). We measured its 
viscosity in the Haake steady-state viscometer as 
4.8 × 10 4 Pa s (Table 1). 

Material c: mixture of PDMS + BaS04. This is a 
homogeneous mixture of 77 wt % of PDMS (described 
above) and 23 wt % barium sulphate powder. It forms an 
opaque pure white material. Flow measurements and 
viscosities using the coaxial cylinder viscometer show 
that it deviates only slightly from Newtonian (Fig. 2), 
with a power-law exponent  n = 1.1. Its viscosity falls in 
the range 9.9 × 104-7.79 × 104 Pa s, for the experimental 
strain rates of 5 × 10-4-10 -2 s -1 used (Table 1). 

Material d: mixture of  Plastilina + Rhodorsil Gomme, 
This is a homogeneous mixture of 67 wt % 'Plastilina' 
(50% red and 50% white) with 33 wt % Rhodorsil 
Gomme GSIR (RG),  already used and described by 
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Table 1. Viscosity measurements from viscometry for the five model materials used in the experiments. See also Fig. 2 

Viscosity Viscosity 
at s.s.r.* at s .s . r . t  Power law 

Viscosity Physical model Temperature 5 × 10 -4 s -1 1 x 10 -2 s -1 exponent  Rheological 
diagram material (°C) (Pa s) (Pa s) n behaviour 

a GSIR (R.G.)  24 + 1 2.90 x 104 2.90 x 104 1.00 Newtonian 
b PDMS 22 ___ 1 4.80 x 104 4.80 x 104 1.00 Newtonian 
c 77%:23% (wt %)$ 21 + 1 9.90 x 104 7.91 x 104 1.1 Non-Newtonian 

PDMS: BaSO4 
d 67% : 33% (wt %)$ 24 + 1 5.50 x 106 4.20 x 105 7.12 Non-Newtonian 

Plastilina: GSIR 
e Dow Coming 3179 23 + 1 1.36 x 106 1.,15 x 105 6 + 1 Non-Newtonian 

* s.s.r. = shear strain rate (from pure-shear apparatus). 
t s.s.r. = shear strain rate (from simple-shear apparatus). 
Swt % = mixture by weight %. 

Sokoutis (1987 fig. 4, material 'f') for mullion experi- 
ments. Plastilina is the Swedish version of Plasticine (see 
McClay 1976, Weijermars 1986a). The rheology of this 
mixture is summarized in Fig. 2 and Table 1, after 
Sokoutis (op. cit.). 

Material e: Dow Coming Dilatant Compound No. 
3179 (DC) is a pink silicone putty, similar in appearance 
to RG (see above), but distinctly different in rheology. It 
is a viscoplastic material in the general sense, with a 
complex rheology which has already been investigated 
by Dixon & Summers (1985, 1986). Our viscosity 
measurements using the coaxial cylinder viscometer 
differ somewhat from those of Dixon & Summers (1986, 
fig. 1) (Fig. 2). We similarly find that within the strain 
rates 10-4-10 -2 s -1, DC is approximately a power-law 
fluid in the range n = 6 + 1 (Dixon & Summers have 
7 + 2), but our effective viscosities at strain rates of 
5 x 10 -4 and 10 -2 are 1.36 x 106 and 1.15 x 105 Pa s, 
respectively, at 23 ° + 1°: about twice the values pre- 
dicted by Dixon & Summers (1986, fig. 1). A possible 
explanation is that during manufacture considerable 
variations in physical properties arise, so that different 
batches could be measurably different. Our values are 
consistent with the strain refraction results described 
later. The question of whether DC behaves approxi- 
mately as a Bingham body over a wide range of strain 
rates (Dixon & Summers 1986) need not concern us 
here, as our experiments fall within the range of strain 
rates (10-4-10 -2 ) where their results and ours are con- 
sistent with power-law flow. 

Experimental design 

Simple-shear experiments. The simple-shear box has a 
standard design, and is described in detail by Arnbom 
(1976). All the experiments were deformed at the slow- 
est strain rate for this shear box, which is ~, = 10 -2 s - l .  
This is the bulk shear strain rate, but individual layers or 
regions of the box deform at very different rates, which 
is the subject of this paper. 

In the main simple shear experiments, a single layer of 
contrasting viscosity was placed parallel to the shearing 
direction of the box (Fig. 3a). The layer was not 
intended to rotate during deformation, nor stretch or 
shorten. 
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Fig. 3. Schematic experimental designs for (a) simple-shear and (b) 
pure-shear models. See text for details of individual experiments. 

The single layers were made to the dimensions of a 
perspex strip, 5 x 2.5 x 0.8 cm. The strip was pressed 
into the matrix to make a rectangular parallelepiped 
mould for the layer, and the layer carefully laid in place. 
Thus, these layers effectively 'floated' in the confining 
medium (Fig. 3a), so as to avoid them being driven by 
the base plates of the box (i.e. at the box strain rate). 
The layers were thus able to deform at a different rate 
from the box and the confining medium, as will be 
described. 

The confining matrix material was either the pink 
Rhodorsil Gomme (RG) or the colourless PDMS, both 
of which are shown to be Newtonian in the range of 
strain rates used. The former material was more satisfac- 
tory for photographing. 

Two additional types of simple-shear experiment 
were constructed. (1) 'Half and half' experiments com- 
prise a shear box half filled with one material, and half a 
contrasting material, with a vertical interface parallel to 
the shear direction. This is designed to test the relative 
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effects of boundary refraction which, by definition, 
induce heterogeneous strain patterns, compared to the 
requirement that the box must deform to the bulk rate. 
(2) One multilayer experiment was constructed to com- 
pare the features of refraction in a repeated rather than 
isolated contrasting layer. For both these experiments, 
the material boundaries were the full width and depth of 
the simple-shear box, unlike the single-layer experi- 
ments. 

All these experiments were marked with a fine grid of 
lines parallel and perpendicular (initially) to the inter- 
faces, as described later. 

Pure-shear experiments. A few pure-shear experi- 
ments were conducted, using the pure-shear apparatus 
described in Sokoutis (1987, appendix). These mostly 
proved far more difficult to construct than the simple- 
shear models, and presented several problems of 
measurement and analysis. Unlike the simple-shear 
apparatus which has a constant ~,, the pure-shear box 
does not have a constant natural strain rate, k, (where 

= 2k) (Sokoutis 1987, fig. 5), but increases with 
increased bulk shortening (i.e. the shortening velocity is 
constant). We take a mean value of 5 x 10 -4 s -1 for ~, 
for descriptive and illustrative purposes. However, as 
we shall explain later, our inability to compute the exact 
strain rate in different parts of these models prevents us 
using the results of pure shear experiments, quantitat- 
ively, for the strain-rate dependent materials used here. 

The models were assembled in a number of stages, 
according to the design in Fig. 3(b). It was necessary for 
the confining matrix to be a solid-plastic material, rather 
than Newtonian; Dow Corning 3179 (DC) was used. 
The matrix block was cut diagonally at the required 
angle for the oblique layer (30 ° or 60°), which was then 
inserted. The assembly was placed in the pure-shear box 
over a thin lubricating base layer of PDMS, and marked 
with a grid (see below). The second lubricating layer of 
PDMS was placed over this, coated with glycerol, and 
the confining top plates finally fixed. 

The marker grids 

A marker grid of orthogonal lines was placed on the 
free horizontal surface of each model (e.g. Figs. 5-8), 
with one set of gridlines parallel to the layer. The layer- 
perpendicular set when deformed gave an immediate 
measure of the layer-parallel shear strain, and the shear 
strain ratio across viscosity boundaries. The fine carbon 
grids were produced according to the 'photocopy' 
method of Dixon & Summers (1985, p. 93), with a 
modification that it proved more useful to use trans- 
parent (acetate) sheets, rather than paper. 

Measurements from models 

Measurements were made from the model photo- 
graphs for each stage of deformation. A central initially 
layer-normal grid-line (G) was chosen, and measure- 
ments made of its shear strain throughout deformation 
SG 14:4-B* 

a) 

6 

G 

\ 
G ~ 

'/B I ~ ,M MATRIX 

~M = ~M l ~B 

Fig. 4. Model measurements and their definitions, for a typical 
single-layer simple-shear model. (a) G is an initial central (layer- 
normal) grid-line, which (b) deforms to the G' trajectory, after bulk 
angular shear q~. (c) Enlargement of the matrix-layer boundary, 
showing the y definitions. In this schematic example, the layer is more 

competent than its matrix. 

(Fig. 4). As will be described later, this deformed 
grid-line (G') is generally curved, showing a smooth 
gradient in the matrix but sharp refraction at the matrix- 
layer boundary (Fig. 4b). This refraction is measured by 
the boundary finite shear strain ratio, yM/YL (=K)  (Fig. 
4c), which will be compared to the inverse viscosity ratio 
(r/L/r/M) (Cobbold 1983, Treagus 1983, 1988). 

The smooth gradients of shear strain towards a visco- 
sity boundary are most conveniently measured as nor- 
malized shear strains, ~, defined as the ratio of the finite 
shear strain, y, to the bulk (or box) shear strain (termed 
YB). Y provides a useful expression of the strain intensifi- 
cation, or depletion, at (or approaching) a viscosity 
boundary, as a factor of the bulk shear strain. In particu- 
lar, we shall determine the normalized matrix boundary 
shear strain, YM (Fig. 4c), to see whether this seems to be 
a constant for the model (i.e. a material property) or 
depends on the box strain. Normalized values as factors 
of the bulk/box value are also a convenient way of 
expressing local shear strain rates as a function of the 
bulk shear strain rate. 

All angular measurements are considered to be accu- 
rate within +_1 °. A constant error range cannot be 
assigned to the shear strains and shear strain ratios, as 
the error of + 1 ° clearly has a more significant effect on 
tangent values of small angular shears than large angles, 
and thus a greater potential error for ratios like K. 
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Table 2. Laboratory models, their specifications and summary measurements. Shear strain nomenclature is defined in Fig. 4; material codes are 
given in the text (also Table 1 and Fig. 2). Predicted K values (right columns) are explained in the Discussion and Fig. 15 

Model Viscosity ratio YM YL Predicted K for linear rx 
Fig. No. No. Layer Matrix m = r/L/r/M Measured mean mean 
(photos) type material material from Table 1 K = YM/YL value value a = hM/h L Exact Approx. 

Fig. 5(a) 

Fig. 5(b) 

Fig. 6(a) 

Fig. 6(b) 

Fig. 7 
Fig. 8(a) 

Fig. 8(b) 

SR-2 PDMS GSIR 1.66 1.53 1.21 0.790 2.56 
SLSS 
SR-8 GSIR PDMS 0.60 0.68 0.83 1.220 2.56 
SLSS 
SR-6 PDMS/B PDMS 1.65-2.06 1.90 1.35 0.700 2.70 
SLSS 
SR-7 DC-3179 PDMS 28.3* 29.5 1.47 0.050 4.0--4.05 
SLSS 
H + H Half model with GSIR 62.0* 63.0 2.50 0.038 
SS and half with DC-3179 

MLSS GSIR (2) DC-3179 (3) Indeterminate 
R-1 P/GSIR DC-3179 Highly variable for model 
SLPS 
R-2 P/GSIR DC-3179 Highly variable for model 
SLPS 

1.71 1.65 

0.65 0.68 

2.68 2.55 

25.5-34.3 24.5-32.7 

Key: SL = single layer; ML = multilayer; H + H = 'half and half'; SS = simple shear; PS = pure shear. (2) and (3) indicate number of layers. 
* is a viscosity ratio computed for the particular model strain rates, and is not a material constant. 

RESULTS FOR INDIVIDUAL MODELS 

Single layers in simple shear 

The results of four experiments will be described in 
detail, with the specifications and summary results given 
in Table 2. 

Model SR2: PDMS layer in RG matrix. This model 
experiment is illustrated in Fig. 5(a). The clear PDMS 
layer is slightly stiffer than the RG host. At all stages of 
deformation, the grid can be seen to refract slightly at 
the boundary, with a smaller angular shear in the layer 
than either the bulk shear or the matrix boundary shear. 

Model measurements are shown in Fig. 9 (summar- 
ized in Table 2). The boundary shear strains are graphed 
in Fig. 9(a), and it is apparent that the shear strain ratio, 
K (RG/PDMS), is independent of the bulk shear strain, 
falling in the range 1.43-1.6, with the average for model 
stages 4-9 as 1.53. This is quite close to the viscosity ratio 
of PDMS/RG of 1.66 from viscometry (Table 1), par- 
ticularly given the uncertain error bars on this ratio and 
the K measurements. 

The normalized matrix boundary shear strain (YM, 
Fig. 4) falls in the range 1.12-1.28 (average 1.21) (Fig. 
9c). It is a 'strain intensification' which shows no system- 
atic change throughout model deformation, so it 
appears to be a material property, and thus a potential 
predictor of the boundary viscosity ratio (see Dis- 
cussion). 

Model SR8: RG layer in PDMS matrix. This model 
was designed to be the exact inverse of model SR2 
above, where now the layer is the less stiff material. 
Stages of the deformation are shown in Fig. 5(b), and all 
show refraction of the grid across the boundary. In this 
experiment the layer has a larger angular shear than 
either the bulk shear or the matrix boundary shear. 

Model measurements are given in Fig. 9(b) (summar- 
ized in Table 2). The boundary shear strain ratio, K 
(PDMS/RG), falls in the range 0.65-0.71, with an aver- 
age of 0.68. For comparison with SR2, the reciprocal 
values of these are 1.41-1.53 (average 1.47), which are 
similar to SR2, though slightly less. This experiment also 
shows no systematic trend of the ratio with bulk shear 
strain, supporting an interpretation that this is a material 
constant. Like SR2, the value is lower than the 1.66 from 
viscometry (Table 1, Fig. 2). 

The normalized matrix boundary shear strain (YM) for 
this experiment is a 'strain depletion' with values in the 
range 0.81-0.84 (average 0.83) (Fig. 9c, Table 2). This 
boundary depletion factor appears to be a material 
property independent of the degree of deformation, and 
the close agreement between the reciprocal of 0.83 
(= 1.20) and the comparable value for model SR2 (1.21) 
confirms this conclusion. 

Model SR6: PDMS + BaSO 4 mixture layer in PDMS 
matrix. This model (not illustrated) has a layer of 
material c, which is slightly stiffer than the matrix and is 
slightly non-Newtonian (Fig. 2, Tables 1 and 2). The 
boundary y ratio, K (matrix:layer), was measured for 
four model stages as 1.83-2.00 (average 1.90). The 
viscosity ratio from the viscometry measurements is not 
a constant for these materials, but is dependent on the 
strain rate in the layer (Table 2), which is slightly less 
than the bulk shear strain rate (ca 7 × 10 -3 s-i) ;  from 
Fig. 2, this gives a viscosity ratio of approximately 1.7. 
Given the close agreement of the K values at different 
bulk shear strains, it seems reasonable to suggest that 
the K value of 1.9 gives the viscosity ratio of these 
materials more accurately than the laboratory visco- 
metry. 

Model SR7: DC layer in PDMS matrix. This (Fig. 6a) 
is the only simple-shear experiment which will be pre- 



Strain variation across rheological boundaries 

e~ 

A 

.... i i !~ !~  ~¸¸I .... 

ii! ii ̧̧  ̧

II 

~oh 

~ Q  

E'= 

~E 

E 

e~ 

o 

u~ 

411 



S. H. TREAGUS and D. SOKOUTIS 

A 

A 
i i! ̧ ! i i  ¸ . . . . .  

412  

! iiiiii~ i i i i ~  ̧~ 

d : l  

z 

~ E  

e e ~  

,-,.~ 

"d~ 

ID 

,,6 



S t r a i n  v a r i a t i o n  a c r o s s  r h e o l o g i c a l  b o u n d a r i e s  

Fig. 7. Multilayer model in simple shear. Layers from top to bottom are DC, RG, DC, RG and DC. (a) ya = 0, (b) 
7B = 0.18 and (c) 7B = 0.31. The positions labelled H and L are 'highs' and 'lows' of the model surface which indicate 

marked departures from plane strain. 
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Fig. 9. }, measurements for models SR2 and SR8 (Fig. 5), according to 
the definitions in Fig. 4. Numbered points are model stages at increas- 
ing YB. (a) and (b) are YL VS YM curves for SR2 and SR8, standardized 
for comparison (RG vs PDMS). Note the similarity. Circled stars are 
the computed average shear strain ratios of 1.53 for (a) and 1.47 for 
(b). (c) ~M values vs bulk shear strain, YB (see Fig. 4) for SR2 (dots) 
and SR8 (crosses) on a log scale for ~M, to show their closeness to 
reciprocality. The broken lines indicate the mean value for each 
model,  and illustrate the independence of ~TM values with bulk strain. 

sented in detail, which uses a layer of markedly non- 
Newtonian material. The boundary shear strain ratios 
(K) are in the range 26.5-31.5, with a mean of 29.5 (Fig. 
10a, Table 2), with no systematic variation with bulk 
shear strain. The normalized matrix boundary shear 
strain (YM) ranges from 1.43 to 1.49 (mean 1.47, Table 
2). This means that the shear strain in the matrix in the 
zone adjacent to the DC layer is almost 50% more than 
the bulk (box) shear strain, a considerable intensifica- 
tion factor. In contrast, the normalized layer shear strain 
(~L; Fig. 4c) is measured to be 0.045-0.056 (0.05 in Table 
2); i.e. ca 1/20 the bulk shear rate. These normalized 
strain factors, like the shear strain ratio, K, seem to be 
material properties, independent of the bulk shear strain 
(Fig. 10b). 

Recall that the DC layer does not have a constant 
viscosity, so we need to know its strain rate to determine 
its viscosity from Fig. 2. The value of YL = 0.05 means a 
layer shear strain rate of 0.05 x box rate throughout the 
model deformation; i.e. ~ = 5 x 10 -4 s -1 (coincidentally 
the pure-shear strain rate, Table 1). For this strain 
rate, the viscosity of DC is found to be 1.36 x 106 Pa s 
(see Fig. 2 and also Fig. 12a, explained later). As stated 
before, the viscosity of PDMS is 4.8 x 104 Pa s. Thus, 
the inverse viscosity ratio for this experiment is 

136/4.8 = 28.3. This value is within the range of 
measured K values given above (Fig. 10a) and so we are 
confident that the strain refraction in this experiment is 
a measure of the viscosity ratio. However, this ratio of 
28-29 is specific to the experiment, and cannot be 
considered as a general viscosity ratio for DC/PDMS. 

This model provides a good example of strain vari- 
ation in the matrix (Fig. 6a), from the bulk shear strain at 
the box edge to a considerably higher strain adjacent to 
the layer. Shear strain profiles are given in Fig. 10(b), for 
four model stages. The normalized shear strain values, 
~, showed no significant difference between the different 
stages, but a consistent pattern (as Fig. 10c), suggesting 
a specific strain-intensification factor for this model. It is 
a slightly sinuous trend about a broadly linear increase in 

towards the layer edge. Whether normalized y values 
should be expected to be linear or not will be addressed 
in the Discussion. 

Simple-shear 'half and half experiment 

Figure 6(b) shows a model in simple shear that com- 
prises two halves: a weaker (Newtonian) Rhodorsil 
Gomme (RG) half (above), and a stiffer non-Newtonian 
DC half (below). This model was designed to test the 
degree to which the bulk shear strain of the shear box 
controls the strain variation, and how refraction at a 
material interface can be accommodated within a bulk 
simple-shear deformation. It is evident in Fig. 6(b) that 
the dramatic strain refraction in the central part of the 
box gives rise to necessary patterns of heterogeneous 
strain towards the edge, and departures from simple 
shear. As deformation proceeds, two features progress- 
ively become pronounced: (i) the interface bends, even 
though it was initially parallel to the simple shearing 
direction, and (ii) topographic 'highs' and 'lows' develop 
on the free surface, indicating local departures from 
plane strain. The full patterns of heterogeneous strain 
have not been analysed, but shear strains across a central 
grid line (arrowed in Fig. 6b) have been measured and 
normalized. Measurements were restricted to the earlier 
stages of deformation, before the two accommodation 
features became too pronounced. 

Figure 11 (a) shows values of y across the box, for four 
stages of deformation. The normalized values show a 
similar pattern for each stage, which, like the experi- 
ments described above, supports the conclusion that the 
intensification or depletion factors are properties of the 
materials and the model. Figure 11 (b) shows the average 
normalized shear strain trend across the box, for the 
Newtonian RG and the power-law DC halves. These 
trends will be discussed later. 

The boundary shear strain ratio, K, has a value of 63 
(taken as the ratio of the average normalized boundary 
strains of 2.5 and 0.038, from Fig. l lb ) .  The ratios for 
individual model stages have a wide range, probably due 
to the large errors in the tangents of small angles with an 
error range of +1 °, which is the reason we prefer to use 
the average normalized ratio. Comparing our value of 
K = 63 to the inverse viscosity ratio for the experiment 
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using the viscometry data (Table 1 and Fig. 2), we have 
the viscosity of RG = 2.9 x 10 -4 Pa s, and derive a value 
for DC of ca 1.8 × 106 Pa s, for the strain rate of 
3.8 x 10 -4 s -1 (from Fig. 2). This gives a ratio of 62, 
which is remarkably close to our mean K. 

Multilayers in simple shear 

The experiment consists of five layers of alternating 
DC and R G  (Fig. 7), deformed in layer-parallel simple 
shear. The pattern of shear strain refraction is shown by 
the sharp grid refraction from layer to layer, and the 
clear difference between the strain ellipses in the two 
layer types. Note that these are the same two materials 
as the 'half and half' model in Fig. 6(b). 

The shear strain in the DC layers away from the 
driving edges of the box are too small to measure,  and 
therefore we cannot compute the shear strain ratio, K, 
nor the shear strain rate and effective viscosity for DC. 
All we can say is that these layers deformed at a very 

small strain rate, to the left of the rheological field shown 
for DC in Fig. 2. This illustrates, again, that viscosity 
ratio is model specific and not easily predicted before an 
experiment,  or from another model (e.g. the previous 
'half and half' model).  

Figure 7 illustrates some important features of this 
multilayer model, which are not produced in the single- 
layer experiments. 

(1) The refracted grid lines (the 7 trajectories) remain 
close to straight within each layer, and then refract 
sharply across interfaces. This is closer to the theoretical 
strain refraction pattern of Treagus (1983, 1988) shown 
in Fig. 1, than to the results for the shorter and single 
layers described above. 

(2) The layers in this model were constructed right up 
to the shearing edge of the box, rather than made to be 
central inclusions like Fig. 3(a). At the driving box 
edges, these layers must therefore deform at the box 
rate, but only a slight distance away, the two layers 
deform very differently. 
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(3) The outermost layers are of the stiffer (DC) 
material. It appears that only a narrow strip of these 
layers deforms at the box rate (unfortunately not grid- 
marked); we might have expected a smoother transition 
from the box strain to almost zero strain, and smoothly 
curved trajectories, in these outer layers. 

(4) The incompetent RG layers show about twice the 
shear strain of the bulk values. This is a clear example of 
strain partitioning (Lister & Williams 1983) between 
competent and incompetent layers. 

Like the 'half and half' model, this experiment devel- 
oped patterns of strongly heterogeneous strain caused 
by accommodation of refracting strains within the bulk 
simple shear. Surface topographic 'highs' and 'lows' 
developed at higher strains (Fig. 7c), as the strains 
noticeably departed from plane strain. 

Single layers in pure shear 

Two experiments will be described which have an 
oblique layer of Plastilina mixture (67% wt Plastilina, 
33% Rhodorsil Gomme) in a matrix of Dow Corning 

(DC). Model R1 has the layer at 30 ° to the principal 
shortening direction (Fig. 8a), and Model R2 at 60 ° (Fig. 
8b), both constructed as described earlier (see Fig. 3b). 
Both layer and matrix are non-Newtonian materials 
(Fig. 2 and Table 1), which are approximately 'power- 
law' at these deformation rates (discussed earlier). 

Both models exhibit clear strain refraction (Fig. 8), 
but this is difficult to quantify and compare with viscosity 
ratio measurements, for the following reasons. 

(1) Neither model began with a perfectly straight layer 
of uniform thickness, and the grid was therefore not 
exactly parallel to the layer, along its length. 

(2) Deformation within the box was strongly hetero- 
geneous, both within the matrix and along the central 
layer. This heterogeneity was partly due to external 
boundary conditions, and partly because the 'layer' was 
actually a rectangular inclusion. 

(3) Local variations of finite strain in the matrix and 
layer indicate that there was considerable strain rate 
variation between different points in the model. The 
effective viscosities of layer and matrix can only be 
determined from Fig. 2 from knowledge of these strain 
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rates (where normal natural strain rate, b, for pure shear 
converts to engineering strain rate, ~, by ~, = 2b). We 
cannot compute these variable strain rates with suf- 
ficient accuracy to justify comparison of K and viscosity 
ratio. 

DISCUSSION OF FEATURES OF THE MODELS 

Boundary shear strain ratio and viscosity ratio 

The main purpose of the model experiments was to 
test the rule of shear strain refraction which was funda- 
mental to theoretical modelling of strain refraction in 
Treagus (1983, 1988). That is, for the models using 
Newtonian materials, is the shear strain ratio equivalent 
to the inverse viscosity ratio? Leading from this, can we 
relate the shear strain ratio to an effective viscosity ratio 
for the non-Newtonian model materials? Cobbold 
(1983) showed that the finite shear strain ratio was only 
equal to the inverse viscosity ratio across a coherent 
interface for linear rheologies (Hookean, Newtonian); 
for non-linear flow laws, no such finite relationship 
exists. However, he showed that for power-law flow, 
there are only two types of motion for which K equals 
the inverse viscosity ratio: zero shearing parallel to the 
interface, and simple shearing parallel to the interface. 
Our experiments (except for the pure shear set) fall into 
the second category, so will allow this relationship to be 
tested. 

Only two experiments (SR2 and SR8) fulfil the con- 
dition that both model materials are Newtonian. These 
are the reciprocal pair of experiments (Fig. 5) using 
materials of quite similar viscosity (RG and PDMS). 
The shear strain ratios, K (RG/PDMS), of the two 
experiments (Figs. 9 and 10) are very close, but slightly 
less than the viscosity ratio from laboratory viscometry 
measurements. We cannot comment with certainty 
which is the more accurate measurement of viscosity 
ratio, as both viscometry and model measurements carry 
errors. However, we believe that if the shear strain ratio 
can be measured across material boundaries, this pro- 
vides the best immediate measure of viscosity ratio for an 
experiment. Viscometry requires a considerable amount 
of laboratory time, and careful reproduction of model 
strain rates, temperature, humidity, etc. However, the 
disadvantage of using the shear strain ratio as a means of 
determining the viscosity ratio is that it is only a measure 
of relative viscosities, not absolute values and dimen- 
sions. 

Now consider the non-Newtonian models. For all the 
experiments in simple shear, whether single layers or the 
multilayer or 'half and half' design, we found that the 
shear strain ratios, K, were independent of the stage of 
deformation, so we concluded that these were model 
constants (e.g. Figs. 9a & b and 10a). However, these K 
values can only measure the inverse viscosity ratio for a 
specific model, rather than for the materials in general. 
This is demonstrated by the K value for a RG-DC 
boundary; in the 'half and half' experiment this was 63, 

and in the multilayer experiment it was too large to 
measure (i.e. ~ too small to measure in the DC layers). 
So we cannot predict these ratios for a particular experi- 
ment, in advance. It would be incorrect to use the bulk 
strain rate in conjunction with a rheology map such as 
Fig. 2 to determine effective viscosities in non- 
Newtonian materials, as these are deforming at quite 
different rates. 

This, then, is the fundamental problem with all model 
experiments using non-linear ductile materials. The 
effective viscosity of the material can only be computed 
after the experiment, by computing the material's strain 
rate (from a grid), and then reading the viscosity from a 
rheology map like Fig. 2. For example, there is no means 
of determining the effective viscosity of the layer in 
model SR7 before the model is deformed; all that is 
known (or expected) is that the DC layer will not have 
the viscosity of 105 Pa s predicted for the box strain rate 
(from Fig. 2), but a considerably higher value. 

There is an additional problem in determining the 
viscosity of non-Newtonian materials in experiments. 
They can only be computed if the material strain rate is 
constant throughout the experiment. For the pure-shear 
experiments, the bulk strain rate is not constant but 
increases, and the local strain rates are probably even 
more variable because of the complex patterns of strain 
developed. So the materials in these experiments (e.g. 
Fig. 8) cannot be considered to have a fixed, and there- 
fore measurable, viscosity during the deformation. 

We conclude that our experiments provide good evi- 
dence to equate the finite shear strain ratio across an 
interface with the inverse effective viscosity ratio for the 
power-law materials, so long as they have deformed by 
simple shear at a constant rate parallel to the interface. 
This supports the special case given by Cobbold (1983), 
although he did not specify constant simple-shear strain 
rate. Ongoing work suggests that this relationship can be 
broadened to a finite simple shearing at a non-steady 
rate, when the power-law materials have the same stress 
exponent, n. 

Patterns of  strain refraction 

The variation and refraction of strain in these experi- 
ments does not exactly follow the pattern of sharp strain 
refraction shown in Fig. 1, based on theoretical model- 
ling (Treagus 1983, 1988). This theory assumed infinite 
planar layers, and each particular layer in homogeneous 
strain, so that the only strain variations were the sharp 
boundary refractions. Laboratory modelling of such an 
ideal system is handicapped by model constraints: the 
finite size of the layers; the limits of model size; and 
problems in assembling planar layers of ductile (ideally 
Newtonian) material with sufficient thickness to allow 
accurate strain measurement. 

All the models presented above illustrate sharp strain 
refraction across material boundaries, but they also 
illustrate smooth strain gradients in the matrix not 
included in the theoretical models. These strain gradi- 
ents, seen in the curving grid lines, provide information 
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on compatible fields of heterogeneous strain associated 
with viscosity contrasts, which will be discussed in a later 
section. 

The finite strain patterns in the models are indicated 
by the deformed grids. Since the models (except Fig. 8) 
were in simple shear, the orientation and degree of 
strain can be calculated simply from the ), values, from 
the following relationships (Ramsay 1980, Treagus 
1981b): 

and 

tan 20' = 2l), (1) 

X = cot O' (2) 

Z = tan 0', (3) 

where X and Z are the principal stretch ellipse axes 
(X > Z), and 0' is the orientation of X to the simple 
shear direction. For a boundary refraction from matrix 
(M) to layer (L), given by 

K = YM/YL (4) 

it follows that 

K = tan 20L/tan 20~. (5) 

As K is equivalent to the inverse viscosity ratio (qL/r/M) 
for Newtonian or power-law materials in steady simple 
shear parallel to layering, so 

~]L/~]M = tan 20L/tan 20~a. (6) 

This relationship between viscosity ratio and finite strain 
refraction in simple shear is identical to the general two- 
dimensional stress refraction equation in Treagus 
(1973). 

Simple-shear strain refraction disallows 0' angles of 
>45 ° , and so cannot give rise to the kinds of strain 
refraction patterns illustrated in Treagus (1983) which 
arise from layer-parallel stretch components as well as 
shear components. Consequently, it is not appropriate 
to compare the strain refraction patterns in the present 
models with the examples of theoretical strain refraction 
in Treagus (1983, 1988) (e.g. Fig. 1), which are qualitat- 
ively similar to cleavage refraction and fanning patterns 
in folded rocks. 

Strain refraction on rheology maps 

Another special feature of the simple-shear experi- 
ments is that the results can be represented directly on a 
log shear stress vs log shear strain rate rheology map, 
like Fig. 2. This graph represents stress vs strain rate in 
terms of maximum shear stress and shear strain rate, and 
so for simple shear the graph co-ordinates are the 
simple-shear stress and strain rate. Application of this 
graph to other deformations is the subject of current 
work. 

Figure 12(a) summarizes the results of model SR7, 
taking the rheology lines for PDMS and DC from Fig. 2 
(lines b and e, respectively). The theoretical require- 
ment of equal r x for PDMS and DC at their interface is 

demonstrated by the horizontal tie-line (L-M, Fig. 12a). 
The jump in ~ at the interface of layer and matrix (L to 
M), the cause of strain refraction, is clearly the inverse 
viscosity ratio of the two materials. The 'strain intensifi- 
cation' within the PDMS matrix adjacent to the DC layer 
(~M = --1.5) is represented by the difference in ~, values 
of B and M on the PDMS line. 

Figure 12(b) illustrates that in theory, the viscosity 
ratio or competence contrast of two rheologically dissi- 
milar power-law materials (here n = 1 and n = 6) should 
be markedly different according to the experimental 
strain rate. 

Condition 1 is our model SR7, where the DC layer is 
more competent (in flow) than the PDMS host. 

Condition 2, at point P where the PDMS and DC 
material lines cross, is where the two materials should 
behave in a rheologically identical fashion; i.e. homo- 
geneously. Dixon & Tirrul (1991) chose the strain rate at 
the predicted crossing point for their two materials (like 
P in Fig. 12b) for their "estimated multilayer rolling 
conditions" for this same reason; the materials can be 
assumed to deform homogeneously. 

Condition 3, shown by broken DC and PDMS lines in 
Fig. 12(b), would be expected at faster strain rates than 
at P. Now the DC layer has a lower effective viscosity 
than PDMS, a reversal of the viscosity (or competence) 
contrast given for Condition 1. This change in relative 
competence is a direct result of the difference in theo- 
logy between a linear material (PDMS) and a strongly 
strain-rate softening material, such as DC. 

For the general case of deformation in rocks, where 
principal straining is oblique to contrasting layers, the 
viscosity ratio between Newtonian and non-Newtonian 
layers or between two non-Newtonian materials is not a 
constant, either in space or time. The effective viscosity 
contrast might be expected to change during a defor- 
mation, and so the effective viscosity contrast between 
the same two lithologies in different structural regimes 
should be very different. Ramsay (1982; also Ramsay & 
Huber 1987, figs. 19.20-23) present vivid examples of 
two rock types (e.g. limestone and marl) showing 
opposite senses of competence in two different regions; 
he explained this in terms of compositional and mineral- 
ogical changes associated with metamorphism. Our re- 
sults present an alternative explanation for competence 
reversal, which requires no change in material compo- 
sition, but arises in two rheologically dissimilar materials 
(e.g. Fig. 12b) solely from different deformation con- 
ditions. 

Variations of strain within the simple-shear models: 
curving ~ trajectories 

These smooth strain variations will be discussed only 
for the simple-shear experiments where one set of grid 
lines represent the y trajectories. Curving grids are also a 
feature of the pure-shear experiments, but the nature of 
this strain variation is more complex, as already noted. 

The refraction theory of Treagus (1983, 1988) 
assumed a simple pattern of sharp strain refraction 
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across boundaries, and uniform strain within uniform 
straight layers (Fig. 1). In other words, there was a 
constant layer-parallel shear stress component  (rx) 
across the idealized multilayer system, and necessary 
jumps in shear strain rate across boundaries (Cobbold 
1983, Cobbold et al. 1984). This is represented by the 
constant rx profile in Fig. 13(a). 

In comparison with this theoretical model,  our single- 
layer experiments showed sharp boundary strain refrac- 
tion, but also curving 7 trajectories towards the bound- 
ary (e.g. Figs. 5 and 6a). The reason for this strain 
gradient in the matrix is that the outer regions of the 
model must deform at the bulk or box rate; yet the 
matrix material here is not equivalent to the 'bulk 
rheoiogy'.  So, in effect, the confining medium for the 
single layer has to change from being of 'bu lk  behaviour'  
at the outer  edge, into being the incompetent layer 
relative to the more competent  single layer (for models 
SR2 and SR7; vice versa for SR8) adjacent to the layer. 

The smooth 7 trajectory indicates a smooth shear stress 
(rx) gradient in the matrix from the edge towards the 
layer boundary, rather than a constant rx, but no evi- 
dence for a 'jump' in rx at the layer boundary (see Fig. 
12a). 

In a heterogeneous simple-shear flow which can be 
legitimately modelled as laminar or plug flow, r should 
increase or decrease linearly (Truesdell 1966, p. 82, 
Hobbs 1972). For Newtonian fluids, 7 would likewise 
vary in linear fashion; however, for non-Newtonian 
fluids, a linear increase (or decrease) in r across a zone of 
shear will give rise to a non-linear increase (or decrease) 
in 9), and therefore a non-linearly varying 7- For a power- 
law stress exponent,  n, the function of 7 would be 
proportional to r". In this light, we shall reinvestigate 
the 7 variations in our models, given by the ~, and 
profiles described earlier. 

Figure 10 showed the 1, variation in normalized (~) 
form, for the PDMS matrix (Newtonian) of model SR7. 
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Although there is a gross linear change in y from the 
edge of the box to the interface with the DC layer, there 
is a consistent sinuous variation about linear for all 
stages of the model. This may be explained in terms of 
the local variations from perfect simple shear caused by 
the accommodation of the refracted strain pattern. 

The y variations across the box for the 'half and half' 
model (Fig. 11) are non-linear for both the RG half 
(Newtonian) and the DC half, although very close to 
linear in RG. In theory, if both materials were in perfect 
simple shear with a linear change in Tx across the box 
(Fig. 13b), there should be a linear ~ trend for RG and an 
approximately 6th power function for DC, as described 
above. It is not clear from a simple inspection of ~ for DC 
in Fig. 11(b) how close this curve is to exponential. We 
have therefore taken the ~ data from Fig. 11(b) and used 
it to determine factors of the bulk strain rate, in order to 
determine the stress profile (rx) across the box (Fig. 14). 
Figure 14(a) represents the 'half and half' experiment on 
a simplified rheology map, comparable to Fig. 12(a) for 
SR7, and shows the interface Tx tie-line joining the two 
different interface strain rates. Figure 14(b) shows that 
the r~ profile is close to linear in a broad region either 
side of the viscosity boundary, but departs from linearity 
towards the box edges, in a symmetrical fashion. How- 
ever, these are only indirect measurements of stress, 
which are dependent on measurement errors, so should 
be used reservedly as a general model. 

a) 

b} 

H 
MODEL DISTAN[E 

c) ~x 

d) ~x 

Fig. 13. Idealized r x profiles (x parallel to interface) across modelled 
systems. (a) Constant r x across binary multilayer, according to earlier 
refraction theory. (b) Linear ~ for 'half and half' model. (c) & (d) Two 
alternatives for single-layer simple-shear experiments,  the second a 
simplification of the first. Shaded layers are the more competent ,  in 

each. 

Predictions of  viscosity ratio assuming linear rx and 
linearly changing y 

The shear stress and strain profiles described for the 
models lead to the conclusion that viscosity boundaries 
generate gradients in r x within the bulk simple-shear 
zone. As these gradients occur both for experiments 
where the central layer is modelled as a rectangular 
inclusion, and for the 'half and half' models (one con- 
tinuous viscosity boundary), we do not think they can be 
explained simply by the shape of the model or interface. 
Instead, the gradients would seem to be a necessary 
feature of a system where a prescribed bulk deformation 
(in this case, simple shear) is achieved by strongly 
different internal deformations within different com- 
ponents. 

The simple-shear models documented above suggest a 
grossly linear change in rx, and thus for Newtonian 
materials, a linearly changing y and ~. On the basis of 
this, it is possible to use the normalized matrix boundary 
strain, YM, which is a measure of the intensification or 
depletion at a viscosity boundary, to provide an alterna- 
tive method of determining the viscosity ratio, or YM/YL. 
Figure 13(c) shows an ideal linear rx trend across a 
single-layer simple-shear model, and Fig. 15(a) shows 
the schematic 7 profile for this case. In order that the 
total shear displacement equals the bulk (i.e. bulk 
7 = 1), the two shaded areas in Fig. 15(a) must be equal. 
The slope of the ~ profile for the layer is not immediately 
obvious, but is equal to the slope for the matrix divided 
by the viscosity ratio. We can approximate Fig. 15(a) to 
the simpler form in Fig. 15(b), where ~L is taken as 
constant: the r x profile is shown in Fig. 13(d). The two 
shaded areas which must now be equal are 

hM(YM -- 1)/2 = hL(1 -- YL), (7) 

where hM, hL are the half-distances of matrix and layer, 
respectively (Fig. 15b). This gives rise to a predicted K of 

K = ~M/~L = 2~vl/(2 + a - a~'M ), (8) 

where a = hM/h L. This approximation, which assumes a 
constant ~ in the layer, gives predicted K values 
approaching the exact expression derived from Fig. 
15(a), for small a and large K. It is a slight underestimate 
of K for K > 1, and overestimate for K < 1. The more 
exact expression from Fig. 15(a) is 

K = [~M(2a + 1) - 1]/[a(2 + a - a~M)]. (9) 

Table 2 shows the predicted K ratios for the single- 
layer simple-shear models, using the exact and approxi- 
mate expressions above and the model values of a and 
~M (average). Comparisons between these K estimates 
and the measured K for the models, and also the visco- 
sity ratio from viscometry, suggest that they may provide 
a useful rough measure of viscosity ratio. This method 
would seem to be valid where K cannot be measured 
across a boundary; for example, where there is a 
measurable strain gradient towards a thin layer which 
has no detectable shear strain. 

Finally, we must ask whether these results, based on 
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Fig. 14. (a) Rheology map for the 'half and half' model, taking the RG and DC data (lines a and e) from Fig. 2, and 
illustrating the jump in ~, from RG to DC along the tx tie-line for the interface (labelled i). (b) r x profile across the model, 

computed by using the ~ profiles in Fig. 11(b) to determine values of ~, and then derive T x for RG and DC, from (a). 

the assumption of a linear variation in r x, are applicable 
to geological strain variations. Can a linear rx gradient, 
appropriate for ideal laminar flow (Truesdell 1966, p. 
81), and which Hobbs (1972) applied to heterogeneous 
simple shear, be used as a working approximation for 
more general geological deformations? We post two 
justifications. Firstly, it is pragmatic to begin with the 
simplest theoretical model, in the absence of contradic- 
tory evidence. So if geological evidence, such as curving 
strain trajectories, suggests stress and strain gradients, it 
is sensible to start by considering the simplest type of 
gradients (i.e. linear). Secondly, deformation in con- 
trasting layered systems may be considered in terms of 
two components (Treagus 1988): a homogeneous layer- 
parallel pure shearing and a heterogeneous (refracting) 
layer-parallel simple shearing. If the latter now includes 
a linear gradient in this shear stress component, the 
compound (additive) effect will be a linear rx gradient. 
(In this general case, r x would not be the maximum shear 
stress, as it is for simple shearing alone.) 

This leads us tentatively to suggest that strain gradi- 

ents generated by viscosity boundaries, in more general 
flows than simple shear, may be characterized by linear 
increases or decreases of boundary-parallel shear stress. 
For Newtonian rheology, this implies linear changes in 
%, and allows predictions of viscosity contrast to be made 
from shear strain increases or decreases, using the ex- 
pressions above. Further investigations (by others) 
should reveal whether this pragmatic approach is justi- 
fied, or not. 

CONCLUSIONS 

(1) Models using Newtonian materials confirm that 
the finite shear strain ratio, K, is a reliable measure of 
the inverse viscosity ratio. However, these experiments 
are for the rather special case of layer-parallel steady 
simple shear (i.e. only the refracting component, b, of 
Treagus 1988). Comparison of shear strain ratios with 
viscosity in pure shear experiments was found to be 
impractical. 
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(2) Power-law material in layer-parallel simple shear- 
ing at constant rate will have a constant viscosity, so will 
be pseudo-Newtonian. Therefore ,  the simple-shear 
models using power-law material follow the same rule as 
for Newtonian materials: i.e. K is a constant, and a 
measure of the inverse viscosity ratio. This will not be so 
for other  deformations. 

(3) The degree of strain intensification adjacent to an 
isolated single layer of contrasting property,  seen by 
curving strain trajectories, may provide a rough measure 
of viscosity contrast, if it can be assumed that there is a 
linear gradient of rx, and Newtonian rheology. 

(4) If rocks behave as non-Newtonian fluids under 
flow conditions, the concept of a ductility scale, and the 
idea of 'competence'  contrast as a material property,  
must be rejected. The viscosity ratio which gives rise to a 
shear strain rate ratio, will vary in time and space, for 
power-law type materials. Adjacent layers with strongly 
different n values must be expected to behave, rela- 
tively, in a very particular fashion, determined by the 
bulk strain rate and the deformation history. The finite 
shear strain rate will be a measure of the 'net viscosity 
ratio' ,  and should not be considered as a material con- 
stant. 

(5) If geological data indicate that there is a constant 
finite shear strain ratio (K) across a lithological bound- 
ary, either regionally or around a geological structure 
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(meso- or macro-scale), and the deformation is clearly 
not simple shear, this is evidence of a constant viscosity 
ratio (or competence ratio), in time and space. We 
suggest this is a good indication that both lithologies 
flowed under approximately Newtonian conditions. 
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